以前,我们倾向于把人工智能看做新事物,尤其是新技术以及和深度学习相关的新技巧。然而,人工智能已经过数十年的发展,否认过往的成功似乎不合逻辑,因为技术总是不断向前发展。
《人工智能的三次浪潮(Three Waves of AI)》,作者是 DARPA 信息创新办公室主管 John Launchbury,他从一个更长远和宽广的视角,将人工智能的历史与未来划分为了三个阶段:
第一阶段:手工知识
第一个阶段的典型代表是「专家系统」(expert systems),其把大量知识转化为由中小企业团队精心制定的决策树来增强人类的智能。专家系统的代表例子是 TurboTax 或者做调度的物流程序,它们在上世纪 80 年代已经出现,且很有可能更早。
Launchbury 认为专家系统在推理方面表现不俗,但仅限于几个严格定义的问题,且没有学习能力,不能处理不确定性问题。
第二阶段:统计学习
第二个阶段是我们现在所处的阶段。尽管 Launchbury 倾向于关注深度学习方面的进步,实际上早在我们使用计算机寻找数据中的信号之时就已经步入了第二阶段。
在第二阶段之中,至少有另外两个重大突破极大地提升了人类的能力。第一个是 Hadoop 与大数据。现在我们已经有了大规模并行处理以及储存和查询大的非结构快速移动数据集的方法。2007 年 Hadoop 首次开源,直到现在。第二个小的突破是现代人工智能工具集的兴起,其由以下 6 种技术组成:
1. 自然语言处理
2. 图像识别
3. 强化学习
4. 问答机
5. 对抗式训练
6. 机器人
Launchbury 表明,到目前为止,我们已经拥有非常先进、细分和强大预测能力的系统,但是仍然还没有理解语境和最小推理能力。
第三阶段:语境顺应(contextual adaption)
Lauchbury 说,当前统计学习时代出现了两个问题,第三个阶段要解决两个问题。
解释推理行为的模型:虽然我们的深度神经网络善于分类,比如图片,但是处理原理仍然显得神秘莫测。我们需要既可以进行分类也可以得到解释的系统。理解推理就能让对处理过程的修正真正有效。
生成模型:这些模型可以从潜在语境中进行学习,比如一个模型,掌握了每个字母的笔画,而不是基于大量糟糕的书写样本进行粗暴分类。我们今天使用的生成模型有望显著减少对训练数据的需求。
鉴于这些特点,处在这一阶段的人工智能系统就能使用语境模型(contextual models)进行感知、学习、推理以及抽象,将从一个系统中学习到的东西应用到一个完全不同的语境中。
新阶段的开始并不意味着前一阶段会戛然而止。一些技术、功能的有用性或许会降低,但是完全被淘汰出局也不太现实。比如,最新技术所需的大量计算力、研发的复杂性以及训练都会制约这些技术退出历史舞台,将来某个时候出现的高价值的问题可能还会用到这些技术。
2022-04-21 08:16:59